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Introduction

» This research analyzes the relationship between
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Discussion

» Data collection: The data collection for this * Fig. 1: Odds ratio (OR) results from binary logistic regression (OR > 1 indicates positive correlation with tanning).
research consists of the Centers for Disease Control < Fig. 2: Graphical representation of OR showing positive correlation between suicide attempts and tanning.
and Prevention (CDC) Youth Risk Behavior Survey ¢ Fig. 3: Plot of accuracy of KNN for every K from 1 through 50, where K = number of neighbors.

(YRBS) 2015 NYC data (1889 total responses). * Fig. 4: Plot of average silhouette width for every K, where K = number of clusters (K = 2 is optimal).
» Logistic Regression: The logistic regression uses ¢ Fig. 5: Dendrogram for agglomerative clustering method.
independent variables (mental health predictor  Fig. 6: Distribution of tanners and non-tanners for the agglomerative clustering method.
questions and demographic covariates) to fit a  Fig. 7: Dendrogram for divisive clustering method.
model for a binary dependent variable (artificial  Fig. 8: Distribution of tanners and non-tanners for the divisive clustering method.
tanning behaviors). * Conclusion: All algorithms are sufficient for this study, but the subset yields more accurate results.
 K-Nearest Neighbor (KNN): KNNis a Ref.
supervised classification machine learning CICTCICES
algorithm. Instances of training data are used to Brener, N., Kann, L., Shanklin, S., Kinchen, S., Eaton, D., Hawkins, J., & Flint, K. (2013). Methodology of the Youth
classify new data objects by calculating the Risk Behavior Surveillance System—2013. Morbidity and Mortality Weekly Report: Recommendations and
minimum distance. Reports, 62(1), 1- 20.
» Agglomerative and Divisive Clustering: Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.).
Agglomerative and Divisive clustering are two Waltham, MA: Morgan Kaufmann Publishers.

unsupervised hierarchical clustering machine
learning algorithms. Agglomerative clustering is a
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