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Abstract

The ”Plate2Recipe” project addresses the compelling
challenge of transforming food images into detailed cook-
ing recipes, a tool of great interest to culinary enthusiasts
and professionals alike. The main objective is to explore
various architectures to learn and determine whether one
can build a complex system using them. Utilizing a Vision
Transformer (ViT), our approach first classifies the ingredi-
ents depicted in food photographs. Subsequently, a special-
ized NLP model synthesizes these ingredients into coherent,
actionable cooking recipes. We fine-tune various models,
experiment with hyperparameters, and evaluate our results
by identifying key mistakes made during training.

1. Background

In today’s digital world, many people encounter visually
appealing food online and wish to recreate these dishes but
lack the necessary details on ingredients and cooking meth-
ods [9]. The goal of this project is to allow users to upload
an image of a dish and receive a complete recipe for it.

Traditional methods, such as online searches or simple
recipe apps, often rely heavily on the user’s ability to de-
scribe the dish and may fail to provide comprehensive in-
formation, especially for complex dishes or when the im-
age quality is low. As deep learning algorithms grow more
widespread, more people are increasingly acknowledging
the benefits of interacting with these systems to enhance our
creativity and performance [7]. This project simplifies the
process of learning to cook new dishes, helps people man-
age their diets by showing them exactly what goes into their
food, and encourages creativity in the kitchen.

To build this system, we used large databases such as
Food-101 and Recipe1M+, which contain over one million
recipes linked to 13 million images, and the RecipeNLG
dataset. These resources were chosen to train the system to
recognize and accurately generate diverse recipes.

2. Approach

The project involves two main components:

1. Ingredient Classification from a food image using Vi-
sion Transformer (ViT) model as introduced in Doso-
vitskiy et al (2021) [5]

2. Recipe Generation using NLP Models (GPT-2 and
LSTM) based on the list of ingredients obtained from
the ViT model.

We integrate Vision Transformer (ViT) and Natural Lan-
guage Processing (NLP) models to transform images into
comprehensive cooking recipes:

1. Food Label Identification with ViT. The model ana-
lyzes food images, classifying the food title label di-
rectly from the image. We segment the image into
fixed-size patches, embedding these linearly, and then
adding position embeddings. Then they are processed
through a Transformer encoder trained with an extra
learnable ”classification token” to identify food types.
This step is crucial as it sets the foundation for the ac-
curate generation of the recipe by providing a precise
list of ingredients.

2. Ingredient Feature Extraction with ViT and Ingre-
dient Encoder and Decoder. Extracting ingredients
from food image presents a huge challenge due to the
complexity and variability of food image. The task
of determining the complete list of ingredients that go
into the food requires the model to have deep under-
standing of the characteristic and textures of the food.
We aim to accomplish this following the same method-
ology outlined in Chhikara et al 2023 [4]. First we em-
ploy ViT’s attention mechanism in order to extract the
image’s features. The feature extractor produces the
image embeddings which is then fed into three normal-
ization layers and the ingredient decoder which is re-
sponsible for extracting ingredients. The decoder con-
sists of 4 consecutive blocks each consists of multi-
ple sequential layers:self-attention, conditional atten-
tion, two fully connected layers, and three normaliza-
tion layers.

3. Recipe Generation:
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Figure 1: Ingredient Extraction Process [4]

• GPT-2 with Language Modeling Head gener-
ates creative draft recipes based on identified in-
gredients, using a fine-tuned GPT-2 model on our
dataset.

• LSTM for Structured Text Generation We also
train LSTM on the RecipeNLG dataset as an
alternative version of the recipe. The LSTM
ensures a logical sequence and consistency in
recipe steps, all ingredients are properly incor-
porated and the instructions flow logically from
one step to the next.

The final step in our workflow is the delivery of the com-
plete recipe. This includes the recipe title, required ingredi-
ents and quantities, and detailed cooking instructions, pro-
viding a comprehensive guide to recreate the dish.

3. Datasets
We use Huggingface Datasets which provides a one-

liner command to download and efficiently pre-process any
datasets in any major public databases. It is also designed
to let the community easily add and share new datasets. It
has native support for image file and allow streaming mode
to save disk space. Instead of downloading the large dataset
all at once, Huggingface Dataset loader allows user to iter-
ate over the dataset one by one.

3.1. Food101 Image

The Food101 contains images of food, organized by type
of food. It was used in Bossard et al 2014 [3]. It consists of
101 food categories with 750 training and 250 test images
per category, which means the dataset has a total of 101k
images. The labels for the test images have been manually
cleaned. On purpose, the training images were not cleaned,
and thus still contain some amount of noise. This comes
mostly in the form of intense colors and sometimes wrong
labels.

We used it to train ViT Food Classification model. We
first split the data set into training and test set with the split
ratio of 80/20. We then resize each image to have maximum
width and height to be 224. This will later allow us to divide
up the image into patch of 16 x 16.

Figure 2: Training image

Figure 3: Image Augmentation

We process each image by resizing them to a particular
size and then normalizing the color channels (R,G,B) using
a mean and standard deviation. These often are referred
to as image transformations. In addition to this, we also
perform data augmentation during training such as random
cropping and flipping or rotating. Data augmentation make
the model more robust to noise and achieve higher accuracy
during validation and inference.

3.2. Recipe1M

The Recipe1M+ is a large-scale, structured dataset that
contains over one million structured cooking recipes, each
linked to images, totaling approximately 13 million images.

We used it to train Ingredients Extractor model. For
preprocessing, we actively remove images that cannot be
opened using PIL library and folders that are empty. We
then follow the same approach we used for processing
Food101 Image.

3.3. RecipeNLG

The RecipeNLG dataset, with over 2 million cooking
recipes, was introduced in (Bień et al., INLG 2020) [2].
This dataset builds upon the prior Recipe1M+ dataset by in-
corporating additional and corrected entries gathered from
a variety of cooking websites.

We selected a random subset of recipes to manage com-
putational resources and speed up training. Each recipe was
formatted into a single text block containing a title, ingre-
dients list, and cooking instructions, providing a structured
context for text generation by the GPT-2 and LSTM models.

The data was then divided into training and validation
sets with an 80/20 split. This division ensures a robust train-

https://github.com/huggingface/datasets 
https://www.kaggle.com/datasets/dansbecker/food-101
http://pic2recipe.csail.mit.edu/
https://recipenlg.cs.put.poznan.pl


ing environment for the model while maintaining a separate
set for validation and fine-tuning, ensuring the model’s ef-
fectiveness in generating novel recipe texts based on learned
patterns.

Utilizing both visual and textual data provides a holistic
approach to understanding and generating content related to
food, potentially enhancing the model’s ability to produce
accurate and contextually relevant outputs. The approach
to managing large datasets through selective sampling and
structured preprocessing ensures that the training process is
feasible and efficient without compromising the quality of
model outputs.

4. Food Name Classification + Ingredients Ex-
traction

4.1. Vision Transformer (ViT) model

Transformer architecture was first introduced in Vaswani
et al (2017) [8]. In the context of Natural Language Process-
ing, The Transformer model extract features for each word
using a self-attention mechanism to figure out how impor-
tant all the other words in the sentence are with respect to
the aforementioned word.

For this part of the project, we will experiment with us-
ing the Vision Transformer (ViT) model to classify the list
of ingredients that go into the image of the food.

First, we will split the food image into fixed-size patches.
We then linearly embed each of them, and add position em-
beddings. Then we feed the resulting sequence of vectors
to a standard Transformer encoder. During the classifica-
tion task, we will adopt the standard approach of adding an
extra learnable “classification token” to the sequence

For this part, we followed the setup instruction in the
vision transformer. We also borrowed the code from
Vision-Transformer-based-Food-Classification and Indian
Food Image Classification to pre-process the images and
finetune the model. We also use the supplementary code
from Chhikara et al 2023 [4] to train and finetune the model
to extract the list of ingredients from the food image.

4.2. Finetuning pretrained ViT model

We obtained the Vision Transformer (ViT) model pre-
trained on ImageNet-21k (14 million images, 21,843
classes) at resolution 224x224 from google/vit-base-
patch16-224-in21k. This model was introduced in Doso-
vitskiy et. al 2020 [5]

We finetuned the pretrained model on the Food101
dataset using T4 GPU from Google Colab. Below is the
configuration of the finetuning:

The finetuned ViT model is then used to classify the food
name label for a random food image obtained on the inter-
net. The random image is fed into the feature extractor to
obtain the image encoding.

Parameter Value
Training Batch Size 16
Evaluation Batch Size 16
LR Scheduler Type linear
LR Scheduler Warmup Ratio 0.1
Gradient Accumulation Steps 4
Total Training Batch Size 64
Total Number of Training Epochs 4
Learning Rate 2e-4

Table 1: ViT Training Parameters
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Figure 4: Training and Evaluation Loss per Step

As shown in Figure 4, both the training and evaluation
loss consistently decrease as the number of steps increases.
This indicates that the model is effectively learning and im-
proving its predictions over time. Concurrently, as depicted
in Figure 5, the evaluation accuracy increases with the num-
ber of steps. This improvement in accuracy alongside the
reduction in loss underscores the model’s increasing profi-
ciency in accurately classifying and predicting outcomes as
it processes more data.

We also trained the ingredient extraction model for 10
epochs with a batch size of 200 with Adam optimizer and
a learning rate of 10e4. At each epoch, we decrease the
learning rate by 0.02%. Each input image was also resized
to a dimension of 224x224x3. The output is the label and
ingredients which matches what the image is showing.

https://github.com/google-research/vision_transformer
https://github.com/kamrul-brur/Vision-Transformer-based-Food-Classification/tree/master
https://colab.research.google.com/drive/1Z0Bd5yTzzRkSFNxhapmxn80HxHZa_YKB#scrollTo=4aNMErFz-GzX
https://colab.research.google.com/drive/1Z0Bd5yTzzRkSFNxhapmxn80HxHZa_YKB#scrollTo=4aNMErFz-GzX
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k
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Figure 5: Evaluation Accuracy per Step

Figure 6: ViT Result

5. Recipe Generation

5.1. GPT-2 Model

The second component of our project involves a lan-
guage model designed to generate recipes based on ingre-
dients. The GPT-2 model, developed by OpenAI, excels
in generating coherent and contextually relevant text. We
fine-tune a pre-trained GPT-2 model using the extensive
RecipeNLG dataset.

5.2. Fine-Tuning pre-trained GPT-2

We selected the GPT-2 medium model [6] for this pur-
pose. Despite being considered relatively modest in size
and capability by 2024 standards, this model suits our needs
for several reasons. Firstly, its manageable size allows
us to fine-tune it on available hardware without the ex-
tensive computational resources required by larger models,
although the training process still demands several hours.
Secondly, the pre-trained version of GPT-2 does not gener-

ate recipes from ingredients unlike newer models as seen on
Figure 4. Our goal was to gain practical experience in fine-
tuning such models. As a baseline for the training process,
we used this notebook 1 that fine-tuned GPT-2 on biogra-
phies.

Input: beef, salt, pepper

Output: beef, salt, pepper, paprika, dried bay
leaf, dried thyme, black pepper, cayenne, paprika,
oregano, and thyme. Makes about 3 cups (2 sticks
or ½ pound). For the veggie burger bun: For the
veggie burger bun: Directions: Bake the veggies
in a pre-heated 350 degree

Figure 7: Example of a pretrained GPT model output.

5.2.1 Data Preprocessing

To preprocess our dataset, we first ensured that all target
recipes fit within the 768 embedding size limit for the GPT-
2 model. Afterwards we format the recipes. Each recipe en-
try in the dataset consists of a title, a list of ingredients, and
cooking directions. We structured the input to the model as
follows:

• Input: A prompt string that starts with a special token
<|startoftext|> followed by the word ”ingredi-
ents:” and a comma-separated list of ingredients.

• Target Output: The recipe title, ingredients list, and
directions, each separated by special tokens and for-
matted to provide clear, structured information.

We divided our dataset into training and validation sets, al-
locating 90% for training and 10% for validation. The com-
plete dataset contains 2,231,141 samples; however, due to
limited resources, we train our model on a subset of only
100,000 samples.

5.2.2 Training

We trained the model with the following hyperparameters:

Parameter 100k Samples 10k Samples
Epochs 3 3

Learning Rate 5× 10−4 2× 10−4

Warm-up Steps 100 500
Epsilon 1× 10−8 5× 10−8

Table 2: Training Parameters for Different Sample Sizes

Our initial experiments with a smaller sample size did not
produce meaningful outputs. We initially assumed that

1GPT-2 Fine-Tuning w/ Hugging Face PyTorch

https://colab.research.google.com/drive/13dZVYEOMhXhkXWfvSMVM1TTtUDrT6Aeh?usp=sharing##scrollTo=Tuq5bqdr4_a6


the problem was exclusively due to the amount of data on
which we trained, so we conducted extensive training with
100,000 samples of recipes on V100 GPUs with a single
epoch taking about 2 hours. However, after we completed
the training and examined the results, they were not satis-
factory; the model was still producing nonsensical outputs.

Input: rice, avocado, beef

Output: Forest: Car Nut- Car els 2 Ingredients
Car Car c Car14 Car p- Carted.) Car/els car
Carrotsels Car.) Car Car Car Car...

Figure 8: Example of poorly finetuned GPT model output
on 100k samples.

At first glance, there appeared to be no issues in our code
that could explain the poor performance of the model. We
made several adjustments, including changing hyperparam-
eters, reducing the dataset size, and modifying how we de-
fined the entire dataset in our PyTorch setup. After these
initial experiments, the results began to make more sense.
Consequently, we trained the model on a dataset compris-
ing 10,000 samples with the hyperparameters from Table 2.
These adjustments led to significant improvements in the
model’s performance, indicating that the modifications
were effective in addressing the initial shortcomings. The
model was able to generate a meaningful recipe and use ex-
clusively ingredients provided in the input. One can see
how model generalized better this time with the sample out-
put from each epoch showing more and more details for the
recipes:

Input: eggs, flour, butter, sugar, vanilla

Epoch 1: Instructions: Combine all ingredients.
Pour in a 9 x 13-inch pan. Bake at 350° for 1
hour.

...

Epoch 3: Instructions: Beat eggs until thick. Add
sugar and beat until fluffy. Add flour, butter and
vanilla. Blend in stiffly beaten egg whites. Spread
in 9 x 9-inch pan. Bake at 325° for 30 minutes.
Cool completely before cutting.

Figure 9: Example of finetuned GPT model output on 10k
samples.

In our evaluation of fine-tuning GPT-2 with 100k and 10k
samples, we measured success by looking at training loss
and actual performance. Although the model trained on
100k samples had lower training losses, as shown in Fig-
ure 10, the model trained on 10k samples performed con-
sistently better, while 100k version was supposedly overfit
and couldn’t produce meaningful recipes.
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Figure 10: Comparison of training losses for fine-tuning
GPT-2 on datasets of 100k and 10k samples.

5.3. LSTM Model

Alongside GPT-2, we employ Long Short-Term Memory
(LSTM) networks, which are a type of recurrent neural net-
work (RNN) designed to handle sequence prediction prob-
lems. LSTMs are adept at processing and generating text
that involves longer sequences, capturing dependencies that
occur over extended texts. This capability is particularly
useful for generating coherent and contextually relevant
sections of the recipe, such as detailed cooking instructions
that require maintaining thematic consistency over multiple
steps. Unlike traditional RNNs, LSTMs can remember in-
formation for a longer duration within the sequence, thanks
to their internal gate mechanisms. This feature allows the
LSTM model to maintain the context over the entirety of
a recipe’s length, improving the flow and logic of the gen-
erated text. This is crucial in ensuring that the generated
recipes make sense from start to finish, adhering closely to
culinary logic. For this part, we followed the steps from
Text Generation with an RNN[1].
We used a multi-layer LSTM for character-level language
modeling. Character-level models generate text one char-
acter at a time, learning to predict the next character in a
sequence given the previous characters.

5.3.1 Data Preprocessing

The data is batched into groups of 16. Special markers
(<t>, <i>, <d>) are used to segment each recipe section.
Characters, including markers, are tokenized with unique
integer indices, essential for LSTM’s character-level pro-

https://www.tensorflow.org/text/tutorials/text_generation


Figure 11: LSTM model configuration

Figure 12: LSTM Loss vs Epoch

cessing. Recipe sequences are capped at 500 characters.
Shorter sequences are padded with < > while longer ones
are truncated, maintaining consistent batch sizes.

5.3.2 Model Configuration and Training

The model was built using the TensorFlow framework and
includes multiple stacked LSTM layers to enhance learning
capacity (see Figure 11). It processes each character by re-
trieving its embedding, feeding it through the LSTM layers,
and then using a dense layer to generate logits that predict
the next character’s likelihood.
The model is trained for 10 epochs with 200 steps each, us-
ing batched sequence of size 16. Categorical cross-entropy
loss function is applied for multi-class classification, pre-
dicting the next character. Adam optimizer with a learning
rate of 0.001 is used for minimizing loss, balancing speed
and convergence stability. Early Stopping prevents over-
fitting by monitoring performance and halting training if
improvement stalls, preserving the model’s generalization
ability and saving computational resources.

5.3.3 Evaluation and Results

The validation loss on Figure 12 suggest that the model may
be overfitting due to complexity or inadequate regulariza-
tion. Halting training at the second epoch could have en-
hanced generalization, as evidenced by optimal validation
loss and accuracy observed at that point.

Input: eggs, flour, butter, sugar, vanilla

Output: eggs, flour, butter,
sugar, vanillaiinnin:i¿Die: ¿Die:
¿Die:i¿D¡i¿D¡i¿D¡i¿D¡i¿D¡i¿i¿D¡i¿t¿e:
¿D¡i¿e:t¿e:t¿e: ¿Die:i¿D¡i¿e¿e¿D¡i¿t¿e¿...

Figure 13: Example of LSTM model output.

6. Anticipated Challenge
We anticipated challenges primarily related to data manage-
ment and computational resources. The large sizes of the
RecipeNLG and Food-101 datasets posed potential issues,
as handling and processing such volumes of data requires
significant memory and processing power. Additionally, we
were concerned about the adequacy of our computational
resources, especially given the complexity involved in train-
ing an advanced model like GPT-2

7. Discussion
The main objective of our project was to explore various ar-
chitectures and assess their compatibility and performance
when used together. We encountered numerous challenges
with fine-tuning the models, which compelled us to inves-
tigate the reasons behind the discrepancy between the ex-
cellent qualitative results and the poor quantitative perfor-
mance. Although we do not yet have a complete recipe
generator, we have established building blocks that can be
further optimized.
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